Skip to main content

Advertisement

Log in

Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Through mechanotransduction, cells can sense physical cues from the extracellular environment and convert them into internal signals that affect various cellular functions. For example, human mesenchymal stem cells (hMSCs) cultured on topographical gratings have been shown to elongate and differentiate to different extents depending on grating width. Using a combination of experiments and mathematical modeling, the physical parameters of substrate topography that direct cell elongation were determined. On a variety of topographical gratings with different grating widths, heights and rigidity, elongation of hMSCs was measured and a monotonic increase was observed for grating aspect ratio (crosssectional height to line-width ratio) between 0.035 and 2. The elongation was also dependent on the grating substrate rigidity over a range of 0.18–1.43 MPa. A mathematical model was developed to explain our observations by relating cell elongation to the anisotropic deformation of the gratings and how this anisotropy depends on the aspect ratio and rigidity of the gratings. Our model was in good agreement with the experimental data for the range of grating aspect ratio and substrate rigidity studied. In addition, we also showed that the percentage of aligned cells, which had a strong linear correlation with elongation for slightly elongated cells, saturated toward 100 % at higher level of cell elongation. Our results may be useful in designing gratings to elicit specific cellular responses that may depend on the extent of cell elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472. doi:10.1038/35074532

    Article  Google Scholar 

  • Ballester-Beltrán J, Cantini M, Lebourg M, Rico P, Moratal D, García AJ, Salmerón-Sánchez M (2012) Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. J Mater Sci Mater Med 23(1):195–204. doi:10.1007/s10856-011-4532-z

    Article  Google Scholar 

  • Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R (2008) Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater (Deerfield Beach, Fla) 20(1):99–103. doi:10.1002/adma.200702487

    Article  Google Scholar 

  • Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ (2009) The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30(28):5094–5103. doi:10.1016/j.biomaterials.2009.05.049

    Article  Google Scholar 

  • Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974. doi:10.1529/biophysj.106.089730

    Article  Google Scholar 

  • Crouch AS, Miller D, Luebke KJ, Hu W (2009) Correlation of anisotropic cell behaviors with topographic aspect ratio. Biomaterials 30(8):1560–1567. doi:10.1016/j.biomaterials.2008.11.041

    Google Scholar 

  • Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) Nanoscale topography modulates corneal epithelial cell migration. J Biomed Mater Res Part A 75(3):603–611. doi:10.1002/jbm.a.30467

    Article  Google Scholar 

  • Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887. doi:10.1083/jcb.200405004

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Google Scholar 

  • Ferri KF, Jacotot E, Leduc P, Geuskens M, Ingber DE, Kroemer G (2000) Apoptosis of syncytia induced by the HIV-1-envelope glycoprotein complex: influence of cell shape and size. Exp Cell Res 261(1):119–126. doi:10.1006/excr.2000.5062

    Article  Google Scholar 

  • Fouchard J, Mitrossilis D, Asnacios A (2011) Acto-myosin based response to stiffness and rigidity sensing. Cell Adhesion Migr 5(1):16–19. doi:10.4161/cam.5.1.13281

    Article  Google Scholar 

  • Franco D, Klingauf M, Bednarzik M, Cecchini M, Kurtcuoglu V, Gobrecht J, Poulikakos D, Ferrari A (2011) Control of initial endothelial spreading by topographic activation of focal adhesion kinase. Soft Matter 7(16):7313–7324. doi:10.1039/c1sm05191a

    Google Scholar 

  • Fraser SA, Ting YH, Mallon KS, Wendt AE, Murphy CJ, Nealey PF (2008) Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media. J Biomed Mater Res Part A 86(3):725–735. doi:10.1002/jbm.a.31519

    Article  Google Scholar 

  • Gao L, McBeath R, Chen CS (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem cells (Dayton, Ohio) 28(3):564–572. doi:10.1002/stem.308

  • Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266. doi:10.1038/nature09198

    Article  Google Scholar 

  • Hu W, Yim EKF, Reano RM, Leong KW, Pang SW (2005) Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. J Vac Sci Technol A Vac Surf Films Off J Am Vac Soc 23(6):2984–2989. doi:10.1116/1.2121729

    Article  Google Scholar 

  • Hu W, Crouch AS, Miller D, Aryal M, Luebke KJ (2010) Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21(38):385301–385306. doi:10.1088/0957-4484/21/38/385301

    Google Scholar 

  • Inerowicz HD, Howell S, Regnier FE, Reifenberger R (2002) Multiprotein immunoassay arrays fabricated by microcontact printing. Langmuir 18(13):5263–5268. doi:10.1021/la0157216

    Article  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci United States Am 107(11):4872–4877. doi:10.1073/pnas.0903269107

    Article  Google Scholar 

  • Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444. doi:10.1016/j.biomaterials.2009.06.042

    Article  Google Scholar 

  • Koo S, Ahn SJ, Zhang H, Wang JC, Yim EKF (2011) Human corneal keratocyte response to micro- and nano-gratings on chitosan and PDMS. Cell Mol Bioeng 4(3):399–410. doi:10.1007/s12195-011-0186-7

    Article  Google Scholar 

  • Loesberg WA, te Riet J, van Delft FCMJM, Schön P, Figdor CG, Speller S, van Loon JJWA, Walboomers XF, Jansen JA (2007) The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27):3944–3951. doi:10.1016/j.biomaterials.2007.05.030

    Google Scholar 

  • Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415– 428

    Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  Google Scholar 

  • Park JS, Chu JSF, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88(3):359–368. doi:10.1002/bit.20250

    Article  Google Scholar 

  • Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, Kam Z, Geiger B, Bershadsky AD (2011) Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat Cell Biol 13(12):1457–1465. doi:10.1038/ncb2370

    Article  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577

    Article  Google Scholar 

  • Roca-Cusachs P, Gauthier NC, DelRio A, Sheetz MP (2009) Clustering of \(\alpha 5 \beta 1\) integrins determines adhesion strength whereas \(\alpha {\rm v} \beta 3\) and talin enable mechanotransduction. Proc Natl Acad Sci United States Am 106(38):16245–16250. doi:10.1073/pnas.0902818106

  • Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci United States Am 104(20):8281–8286. doi:10.1073/pnas.0702259104

    Article  Google Scholar 

  • Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438. doi:10.1529/biophysj.108.132217

    Article  Google Scholar 

  • Schoen I, Hu W, Klotzsch E, Vogel V (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10(5):1823–1830. doi:10.1021/nl100533c

    Article  Google Scholar 

  • Sjöström T, Lalev G, Mansell JP, Su B (2011) Initial attachment and spreading of MG63 cells on nanopatterned titanium surfaces via through-mask anodization. Appl Surf Sci 257(10):4552–4558. doi:10.1016/j.apsusc.2010.11.064

    Article  Google Scholar 

  • Sun J, Ding Y, Lin NJ, Zhou J, Ro H, Soles CL, Cicerone MT, Lin-Gibson S (2010) Exploring cellular contact guidance using gradient nanogratings. Biomacromolecules 11(11): 3067–3072, doi:10.1021/bm100883m

    Google Scholar 

  • Théry M, Pépin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskelet 63(6):341–355. doi:10.1002/cm.20126

    Google Scholar 

  • Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WTS (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649. doi:10.1038/nmat3339

    Google Scholar 

  • Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2010) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci United States Am 109(18):6933–6938. doi:10.1073/pnas.1117810109

    Google Scholar 

  • Tsukruk VV, Gorbunov VV, Huang Z, Chizhik SA (2000) Dynamic microprobing of viscoelastic polymer properties. Polym Int 49(5):441–444. doi:10.1002/(SICI)1097-0126(200005)49:5<441::AID-PI240>3.0.CO;2-U

    Google Scholar 

  • Tzvetkova-Chevolleau T, Stéphanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P (2008) The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29(10):1541–1551. doi:10.1016/j.biomaterials.2007.12.016

    Google Scholar 

  • Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res Part A 75(3):668–680. doi:10.1002/jbm.a.30478

    Article  Google Scholar 

  • Wójciak-Stothard B, Madeja Z, Korohoda W, Curtis A, Wilkinson C (1995) Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behaviour. Cell Biol Int 19(6):485–490. doi:10.1006/cbir.1995.1092

    Article  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041

    Article  Google Scholar 

  • Yim EKF, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26):5405–5413. doi:10.1016/j.biomaterials.2005.01.058

    Google Scholar 

  • Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829. doi:10.1016/j.yexcr.2007.02.031

    Article  Google Scholar 

  • Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA (2010) Cell shape, spreading symmetry and the polarization of stress-fibers in cells. J Phys Condens Matter 22(19):194110–194121. doi:10.1088/0953-8984/22/19/194110

    Google Scholar 

Download references

Acknowledgments

We thank Benjamin K.K. Teo, Seok Hong Goh, Aung Aung Kywe Moe and Soneela Ankam for their help with the experiments and engaging discussion, Benjamin K.K. Teo and Jacky W.C. Lee for the Instron tensile testing. This work was supported by the Singapore National Research Foundation under its Research Center of Excellence, Mechanobiology Institute Singapore, partially supported by the Singapore Ministry of Education Tier 1 fund (T13-0802-P04) administered through the Department of Bioengineering National University of Singapore, and A*STAR Institute of High Performance Computing. Sum Thai Wong is supported by A*STAR Scientific Staff Development Award program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng-Hwee Chiam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3548 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, S.T., Teo, SK., Park, S. et al. Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation. Biomech Model Mechanobiol 13, 27–39 (2014). https://doi.org/10.1007/s10237-013-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0483-2

Keywords

Navigation